Accuracy of short‐term sea ice drift forecasts using a coupled ice‐ocean model
نویسندگان
چکیده
Arctic sea ice drift forecasts of 6 h-9 days for the summer of 2014 are generated using the Marginal Ice Zone Modeling and Assimilation System (MIZMAS); the model is driven by 6 h atmospheric forecasts from the Climate Forecast System (CFSv2). Forecast ice drift speed is compared to drifting buoys and other observational platforms. Forecast positions are compared with actual positions 24 h-8 days since forecast. Forecast results are further compared to those from the forecasts generated using an ice velocity climatology driven by multiyear integrations of the same model. The results are presented in the context of scheduling the acquisition of high-resolution images that need to follow buoys or scientific research platforms. RMS errors for ice speed are on the order of 5 km/d for 24-48 h since forecast using the sea ice model compared with 9 km/d using climatology. Predicted buoy position RMS errors are 6.3 km for 24 h and 14 km for 72 h since forecast. Model biases in ice speed and direction can be reduced by adjusting the air drag coefficient and water turning angle, but the adjustments do not affect verification statistics. This suggests that improved atmospheric forecast forcing may further reduce the forecast errors. The model remains skillful for 8 days. Using the forecast model increases the probability of tracking a target drifting in sea ice with a 10 km × 10 km image from 60 to 95% for a 24 h forecast and from 27 to 73% for a 48 h forecast.
منابع مشابه
Bremen thomas hollands motion tracking of sea ice with sar satellite data
Sea ice influences the life in the polar regions, but it also is an important factor in the climate system due to its interaction with atmosphere and ocean. Its motion has been systematically observed for about a century. For the last thirty years, sea ice kinematics have been studied continuously over large areas, also taking advantage of the increasing availability of satellite data. The inte...
متن کاملSeasonal forecasts of Arctic sea ice initialized with observations of ice thickness
[1] Seasonal forecasts of the September 2012 Arctic sea ice thickness and extent are conducted starting from 1 June 2012. An ensemble of forecasts is made with a coupled ice-ocean model. For the first time, observations of the ice thickness are used to correct the initial ice thickness distribution to improve the initial conditions. Data from two airborne campaigns are used: NASA Operation IceB...
متن کاملFuture sea ice conditions and weather forecasts in the Arctic: Implications for Arctic shipping
The ability to forecast sea ice (both extent and thickness) and weather conditions are the major factors when it comes to safe marine transportation in the Arctic Ocean. This paper presents findings focusing on sea ice and weather prediction in the Arctic Ocean for navigation purposes, in particular along the Northeast Passage. Based on comparison with the observed sea ice concentrations for va...
متن کاملRecent and future changes of the Arctic sea-ice cover
[1] The present and future state of the Arctic sea ice cover is explored using new observations and a coupled one dimensional air–sea–ice model. Updated satellite observations of Fram Strait ice-area export show an increase over the last four years, with 37% increase in winter 07–08. Atmospheric poleward energy flux declined since 1990, but advection of oceanic heat has recently increased. Simu...
متن کاملForum for Arctic Modeling and Observational Synthesis (FAMOS): Past, current, and future activities
The overall goal of the Forum for Arctic Modeling and Observing Synthesis (FAMOS) community activities reported in this special issue is to enhance understanding of processes and mechanisms driving Arctic Ocean marine and sea ice changes, and the consequences of those changes especially in biogeochemical and ecosystem studies. Major 2013–2015 FAMOS accomplishments to date are: identification of...
متن کامل